網(wǎng)站介紹 關于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號
微分學是考研數(shù)學重難點,而一元函數(shù)微分學的內容有4個部分,常常考察5類題型,大家需要一一去研究把握,下面跟著一起來看看吧。
▶一元函數(shù)微分學有四大部分
1、概念部分,重點有導數(shù)和微分的定義,特別要會利用導數(shù)定義講座分段函數(shù)在分界點的可導性,高階導數(shù),可導與連續(xù)的關系;
2、運算部分,重點是基本初等函的導數(shù)、微分公式,四則運算的導數(shù)、微分公式以及反函數(shù)、隱函數(shù)和由參數(shù)方程確定的函數(shù)的求導公式等;
3、理論部分,重點是羅爾定理,拉格朗日中值定理,柯西中值定理;
4、應用部分,重點是利用導數(shù)研究函數(shù)的性態(tài)(包括函數(shù)的單調性與極值,函數(shù)圖形的凹凸性與拐點,漸近線),最值應用題,利用洛必達法則求極限,以及導數(shù)在經(jīng)濟領域的應用,如“彈性”、“邊際”等等。
常見考察題型
1、求給定函數(shù)的導數(shù)或微分(包括高階段導數(shù)),包括隱函數(shù)和由參數(shù)方程確定的函數(shù)求導。
2、利用羅爾定理,拉格朗定理,拉格朗日中值定理,柯西中值定理證明有關命題和不等式,如“證明在開區(qū)間至少存在一點滿足……”,或討論方程在給定區(qū)間內的根的個數(shù)等。
此類題的證明,經(jīng)常要構造輔助函數(shù),而輔助函數(shù)的構造技巧性較強,要求讀者既能從題目所給條件進行分析推導逐步引出所需的輔助函數(shù),也能從所需證明的結論(或其變形)出發(fā)“遞推”出所要構造的輔函數(shù),此外,在證明中還經(jīng)常用到函數(shù)的單調性判斷和連續(xù)數(shù)的介值定理等。
3、利用洛必達法則求七種未定型的極限。
4、幾何、物理、經(jīng)濟等方面的最大值、最小值應用題,解這類問題,主要是確定目標函數(shù)和約束條件,判定所論區(qū)間。
5、利用導數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖像,等等。
來源未注明“中國考研網(wǎng)\考研信息網(wǎng)”的資訊、文章等均為轉載,本網(wǎng)站轉載出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其內容的真實性,如涉及版權問題,請聯(lián)系本站管理員予以更改或刪除。如其他媒體、網(wǎng)站或個人從本網(wǎng)站下載使用,必須保留本網(wǎng)站注明的"稿件來源",并自負版權等法律責任。
來源注明“中國考研網(wǎng)”的文章,若需轉載請聯(lián)系管理員獲得相應許可。
聯(lián)系方式:chinakaoyankefu@163.com
掃碼關注
了解考研最新消息
網(wǎng)站介紹 關于我們 聯(lián)系方式 友情鏈接 廣告業(yè)務 幫助信息
1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 滬ICP備12018245號