國內率先建立了一套基于密度泛函理論非絕熱電子-離子耦合的原子碰撞動力學模型程序[核物理評論 19 (2002) 157、Journal of Chemical Physics 134 (2011) 154308];系統地研究了原子碰撞過程中電荷轉移機理。國際上率先提出了從電子密度中提取體系態分辨信息的方法[Journal of Chemical Physics 139 (2013) 094108、Journal of Chemical Physics 145 (2016) 114104];當前,人們通過精密調控飛秒激光脈沖與物質相互作用物理過程,既能獲得具有特定多維度(偏振、位相、頻率、振幅、脈寬及模場等)時空結構的新型光場,又能獲得具有特定物性(光、電、磁等)的新型物質狀態,從中發現一系列新現象與新效應,并開發出相應的原創技術,為其在物理、信息處理與通訊、材料、化學與生命等研究及應用中提供基礎性和前瞻性的科學技術儲備。少周期超短飛秒激光脈沖具有超強、超快和時空波形靈活可控的特性,為開展“新型光場調控物理及應用”研究提供了有力的工具:超強特性使其可以深刻非線性地調控材料的(光、電、磁等)屬性;超快特性使其可以非熱、相干、精準地調控材料的(光、電、磁等)屬性。我們的研究工作表明,少周期超短飛秒激光脈沖可以無損、可逆地瞬時動態調控寬
【1】Xiaoqin Zhang, Feng Wang*, Xiaoli Wang and Lan Jiang (2019): Controlling anisotropy of dielectrics by an ultrashort double-pulse laser, J. Phys. D: Appl. Phys. 52, 035106.
【2】Xiaoshuang Kong, Feng Wang*, Xiaoqin Zhang, Zehui Liu, and Xiaoli Wang (2018): Dielectric properties of cubic boron nitride modulated by an ultrashort laser pulse, Physical Review A 98, 053439.
【3】Xiaoqin Zhang, Feng Wang*, Fengshou Zhang, and Yugui Yao (2018): Control of the hyperbolic dispersion of dielectrics by an ultrashort laser pulse, Physical Review B 97, 014310.
【4】Chang-Kai Li, Feng Wang, Bin Liao, Xiao-Ping OuYang, and Feng-Shou Zhang* (2017): Ab initio electronic stopping power and threshold effect of channeled slow light ions in HfO2, Physical Review B 96, 094301.
【5】Chang-kai Li, Fei Mao, Feng Wang, Yan-long Fu, Xiao-ping Ouyang, and Feng-Shou Zhang* (2017): Electronic stopping power of slow-light channeling ions in ZnTe from first principles, Physical Review A 95, 052706.
【6】Xiaoqin Zhang, Feng Wang*, Lan Jiang, and Yugui Yao (2017): Manipulation of the dielectric properties of diamond by an ultrashort laser pulse, Physical Review B 95, 184301.
【7】Feng Wang*, Yugui Yao, Florent Calvayrac, and Fengshou Zhang (2016): Extraction of state-resolved information from systems with a fractional number of electrons within the framework of time-dependent density functional theory, Journal of Chemical Physics 145, 114104.
【8】Xuhai Hong, Feng Wang, Yong Wu*, Bingcong Gou, and Jianguo Wang (2016): H+-H2O collisions studied by time-dependent density-functional theory combined with the molecular dynamics method, Physical Review A 93, 062706.
【9】Cong-Zhang Gao, Jing Wang, Feng Wang, and Feng-Shou Zhang* (2014): Theoretical study on collision dynamics of H+ + CH4 at low energies, Journal of Chemical Physics 140, 054308-1-12.
【10】Feng Wang*, Lan Jiang, Xuhai Hong, Yalong Jiao, Jianguo Wang, and Fengshou Zhang (2013):
An effective method for state population within time-dependent density functional theory, Journal of Chemical Physics139,094108.
【11】Xuhai Hong, Feng Wang*, Yalong Jiao, Wenyong Su, Jianguo Wang, and Bingcong Gou (2013): Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne, Journal of Chemical Physics 139, 084321.
【12】C. L. Zhang, H. X. Hong, F. Wang, Y. Wu, and J. G. Wang* (2013): Theoretical investigation of He2+-Ar collisions in the energy range of 4–300 keV/amu, Physical Review A 87, 032711.
【13】Feng Wang*, Xuhai Hong, Jian Wang, Kwang S. Kim* (2011): Coordinate space translation technique for simulation of electronic process in the ion–atom collision, Journal of Chemical Physics 134, 154308.