[1] Du, H. Y., An, Y. L., Wei, Y. H., Hou, L. F., Liu, B. S., Liu, M. M., & Liaw, P. K. (2019). Experimental and numerical studies on strength and ductility of gradient-structured iron plate obtained by surface mechanical-attrition treatment. Materials Science and Engineering: A, 744, 471-480. (SCI 收錄)
[2] Du, H., An, Y., Zhang, X., Wei, Y., Hou, L., Liu, B., ... & Guo, Z. (2019). Hydroxyapatite (HA) modified nanocoating enhancement on AZ31 Mg alloy by combined surface mechanical attrition treatment and electrochemical deposition approach. Journal of Nanoscience and Nanotechnology, 19(2), 810-818. (SCI 收錄)
[3] Du, H., Zhao, C. X., Lin, J., Guo, J., Wang, B., & Hu, Z., et al. (2018). Carbon nanomaterials in direct liquid fuel cells. Chemical Record. 18(9),1365-1372(SCI 收錄)
[4] Du, H. Y., An, Y. L., Wei, Y. H., Hou, L. F., Liu, B. S., Liu, H., ... & Guo, Z. H. (2018). Nickel Powders Modified Nanocoating Strengthened Iron Plates by Surface Mechanical Attrition Alloy and Heat Treatment. Science of Advanced Materials, 10(7), 1063-1072. (SCI 收錄)
[5] Du, H. Y., An, Y. L., Wei, Y. H., Hou, L. F., Guo, C. L., Umar, A., & Guo, Z. (2017). Iron Plates Modified with ZrO2 Coatings by Surface Mechanical Attrition Alloy and Heat Treatment. Science of Advanced Materials, 9(10), 1729-1734. (SCI 收錄)
[6] Du, H., Cheng, Y., Hou, L., Li, Y., & Wei, Y. (2017). Evolution of intergranular corrosion resistance for HR3C heat-resistant austenitic stainless steel at elevated temperature. Corrosion Engineering, Science and Technology, 52(5), 343-348. (SCI 收錄)